
074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E 	 July/August 2013 | IEEE Software � 95

Voice of Evidence

Toward Learning Teams
Rashina Hoda, Jeffry Babb, and Jacob Nørbjerg

Today’s fast-paced world of soft-
ware development is filled with uncertainties
that demand agility. With rapid changes in
technology and platform terrains, software
teams are more than ever expected to hit the
ground running—even as they frequently
find themselves in uncharted territories. One
strategy for surviving this onslaught of ever-
changing conditions is to fight variety with
variety.1 In other words, equip development
teams with a variety of skills and abilities
to effectively handle the variety of changing
technologies, platforms, and requirements
they face on a daily basis.

To expect a team to have every skill up-
front is to expect a perfect team. Even if this
idealistic vision were achievable, the team
would still need to frequently upgrade its
skills to keep pace with ongoing changes. So,
perfect teams aren’t the answer to today’s
software development challenges. Rather, we
need learning teams—teams that can repeat-
edly bend and blend on demand to suit the
environments they work in.

Ideally, software teams are meant to en-
gage regularly in practices that enhance vari-
ous types of learning—in new engineering
and management practices, new or complex
technical skills, cross-functional skills, and
experiential lessons learned. All these knowl-
edge areas fuel continuous improvement, a
core principle of agile methods: “At regular
intervals, the team reflects on how to become
more effective, then tunes and adjusts its be-
havior accordingly” (http://agilemanifesto.
org/principles.html).

Here, we share evidence from longitu-

dinal qualitative studies based on observa-
tions and queries of practices in several ag-
ile teams. Although the studies didn’t focus
exclusively on learning issues, they revealed
the challenges of keeping continuous learn-
ing practices at the same level of importance
as delivering working software.

The biggest obstacle to such learning is
iteration pressure—that is, the pressure ex-
perienced by teams to deliver goals commit-
ted to within an iteration. Although some
iteration pressure helps motivate teams to
meet their goals, working in high-paced, un-
certain environments and catering to several
project commitments at once often leads to
sacrificing core agile principles with regard
to continuous learning.

Evidence of Iteration Pressure
Our article combines and compares findings
from two studies:

•	 a grounded-theory study of software
teams and practice in medium to large
organizations involved 58 agile practi-
tioners across 23 software organizations
in New Zealand and India—most teams
were using Scrum, XP, or a combination
of the two;2 and

•	 a longitudinal action-research study of
reflective practice in a small US soft-
ware development company using agile
practices.3

The qualitative nature of the research de-
sign allowed us to observe and query team
members directly. In both studies, the teams

Editor: Tore Dybå
SINTEF
tore.dyba@sintef.no

Editor: Helen Sharp
The Open University, London
h.c.sharp@open.ac.uk

96	 IEEE Software | www.computer.org/software

Voice of Evidence

adapted standard agile practices to suit
particular organizational, project, or
domain contexts.4 However, the prac-
tices most closely related to learning
were also those most often sacrificed
or poorly implemented over time. The
paradox is that continuous learning is
essential to maintaining a team that
can continue its effectiveness.

Time constraint was commonly
cited as a reason for learning-related
problems. For example, some teams
faced significant—and at times exces-
sive—iteration pressure on a regular
basis:

I’m always feeling the need to rush,
rush, rush.... After one week [it-
eration], we want to remove all these
stickies [task cards] from the wall.
So it’s always pressure. —Developer,
New Zealand

Software practitioners expressed
their concerns about “fitting learning”
into an iteration. They felt that custom-
ers pay for development of features—

tangible and testable—written as user
stories, estimated by story points, and
implemented as technical tasks. Al-
though some customers—typically,
long-term with established trust—ap-
preciate the value of continuous learn-
ing, others are reluctant to pay for ac-
tivities that aren’t directly linked to
immediate feature development. The
benefit of including something as intan-
gible as learning into iterations is dif-
ficult to justify.

So focus is on delivering business
value as soon as possible. As a result
of that, you take items which are most
required from the point of view of
business. —Developer, India

Adaptations made in response to
such time constraints are usually un-
intended and unplanned, so their con-
sequences are difficult to handle. For
example, as a consequence of iteration
pressure, teams struggle to set aside
time from their regular development
tasks for learning new techniques and
skills:

I’d be interested to learn various agile
techniques for requirements gather-
ing…, [but] I haven’t really had a lot of
time to think about it. [Scrum] is very
action oriented. —Business analyst,
New Zealand

As teams start to feel iteration pres-
sure, specific learning-focused prac-
tices, such as retrospectives,3 start to
drop down their priority list.

In the [retrospectives] that we do, they
are so much quicker now than it used
to be.... And now it is almost like lip
service.… We don’t do self-evaluation
as well as we used to. —Tester, New
Zealand.

Some adaptations are made in the
context of very small development
companies akin to start-ups, where the
team is the organization. These teams
face the pressure of procuring enough

business, and it’s somewhat common
to be living from project to project. As
a smaller team works toward growing
its business, the exposure to iteration
pressure is very direct because there’s
no management layer above the team
members and they’re directly exposed
to customers.

There’s no way that I can keep up
with the technology and grow the
business at the same time.… [I don’t]
have the time to stop, reflect, and
learn. —Small software organization
owner and lead developer, US

Additionally, teams must find time
just to keep up with advances in new
technology. In the face of time scarcity,
where can spare cycles for reflective
team learning be found?

[For a] small group to be able to make
time for learning, [you realize that]
it’s the prudent thing to do, but you
would have to really force yourself to
do so. —Small organization devel-
oper, US

Learning under Pressure
Several strategies emerged from our
studies—both preventive and cura-
tive—for achieving a balance between
iteration pressure and continuous
learning.

Expectation Management
Managing expectations is a preventive
strategy to contain iteration pressure.
In the case of new agile teams, making
room for initial learning involves edu-
cating customers:

I have sort of a secret conversation
with the customer, “Right, okay. This
team is new here for learning. Expect
them to blow the first sprint. It is very
likely to happen.”... And if anything
good comes out of it, they [custom-

The practices most closely related
to learning were also those most
often sacrificed over time.

	 July/August 2013 | IEEE Software � 97

Voice of Evidence

ers] are positively surprised. —Agile
coach, New Zealand

Similarly, you can manage the expec-
tations for mature teams by educat-
ing management and customers on the
importance of learning. This leads to
a learning team environment that lets
teams learn from mistakes and have
ample opportunities to include various
types of learning within their regular
iterations.

Reflective Practice
This epistemological perspective holds
that tacit knowledge is grounded in
knowing-in-action and knowing-in-
practice. That is, new knowledge and
knowing are grounded in the outcomes
of daily practice in which practitioners
assess the outcomes of their daily ex-
perimentation to build their own reper-
toire of expertise.

This is both a curative and preven-
tive strategy. It’s curative in that teams
can be refocused on creating the “tiny
habits,”5 which can serve to reestablish
the primacy of learning. It’s preventive
because teams that focus on reflective
practice will accept the value of even a
small amount of time devoted to learn-
ing, seeing it as normative behavior
that’s as important as unit or accep-
tance testing.

Retrospective
A retrospective is an agile practice spe-
cifically devoted to reflective practice.6
It lets teams inspect their current state,
learn from experiences, and make plans
to adjust future iterations on the basis
of that learning. Introducing and ad-
hering to meaningful retrospectives is a
key to sustained learning.

The key here that makes it all work is
this practice of retrospectives. Because
that essentially says…, “Stop. How are
we doing, guys?” …[W]ith this prac-
tice and with the continuous kneading

out the things that don’t quite work
and focusing on the things that work,
you grow that ecosystem, you develop
it, and you’re bound to be successful.
—Agile coach, New Zealand

Learning Spike
A learning spike is an adapted, cura-
tive practice of setting aside exclusive
time for learning, either within an it-
eration or spread across multiple itera-
tions. It might not involve the whole
team. While some members perform

the learning spike, others can continue
to work on regular stories and tasks,
thereby managing iteration pressure to
an extent.

For example, practitioners will of-
ten attend technical conferences, go for
more training in a workshop, or per-
haps even undertake an internal retreat.

The Inevitable Payoff
The dilemma faced by software teams
is between harnessing opportunities for
continuous learning on the one hand
and sacrificing or postponing learning-
focused practices and succumbing to
iteration pressure on the other. On an
everyday basis, teams must choose be-
tween quick solutions for short-term
gains and investments in good practices
for long-term benefits. This is similar
to the “technical debt” idea that Ward
Cunningham introduced in 1992,7 ex-
cept it focuses on learning—hence, a
learning debt.

Managing the dilemma requires a

balancing act between iteration pres-
sure and continuous learning. If your
balance falls on the side of iteration
pressure, you lose out on learning. If
your balance falls on the side of con-
tinuous learning, you lower productiv-
ity in the short term. Ideally, a state of
perfect balance or equilibrium between
the two ensures good productivity with
learning.

Small but frequent investments in
learning would likely avoid mammoth
one-time repayment scenarios that can
bring team productivity to a complete

standstill. For example, apart from reg-
ular practices such as retrospectives,
every few iterations the team might de-
cide to slow down and invest in other
learning-focused practices, such as a
learning spike.

The Missing “I” in Teams?
Perhaps the missing element in many
strategies for sustaining team learn-
ing is each team member’s individual
responsibility for engaging in constant
and daily reflection practices. Because
agile methods call for self-motivated
and cross-functional teams, the various
progenitors of agile methods likely en-
visioned effective agile team members
as reflective practitioners.

Donald Schön’s reflective-practitioner
perspective suggests that the onus of
learning under pressure is on the indi-
vidual practitioner.8 This isn’t a pana-
cea but a mindset to be infused into
team culture. For instance, Schön sug-
gests adopting a daily reflection and

Reflective practice grounds new
knowledge and knowing in the
outcomes of daily practice.

98	 IEEE Software | www.computer.org/software

Voice of Evidence

action cycle called the “ladder of reflec-
tion,” which James Tomayko and Orit
Hazzan operationalize into a means of
habitualizing daily reflection in and on
action.9 Such a simple practice presents
a “tiny habit” toward incremental and
iterative learning.5

I n some respects, agile teams be-
come victims of their success be-
cause managers and customers

come to expect a steady pace of pro-
ductivity. When facing excessive itera-
tion pressure, the teams we observed
often succumbed to making decisions
that favored quick solutions that would
meet tangible iteration deadlines over
investing in continuous learning to
gain distant long-term benefits.

Effective learning under pressure
involves conscious efforts to imple-
ment strategies that will balance its
priority within iteration pressures.
Teams, their management, and cus-
tomers must all recognize the impor-
tance of creating learning teams as the
key to braving the erratic climates and
uncharted territories of future soft-
ware development.

References
	 1.	 G. Morgan, Images of Organization, Sage

Publications, 1986.
	 2.	 R. Hoda, J. Noble, and S. Marshall, “Self-

Organizing Roles on Agile Software Develop-
ment Teams,” IEEE Trans. Software Eng.,
vol. 39, no. 3, 2013, pp. 422–444.

	 3.	 J.S. Babb and J. Nørbjerg, “A Model for
Reflective Learning in Small Shop Agile
Development,” Proc. IRIS: Selected Papers
of the Information System Research Seminar
in Scandinavia, Hanne Westh Nicolajsen,
Trondheim, 2012, pp. 23–38.

	 4.	 R. Hoda et al., “Agility in Context,” Proc.
Object-Oriented Programming, Systems,
Languages and Applications Conf. (OOPSLA
10), ACM, 2010, pp. 74−88.

	 5.	 B.J. Fogg, “A Behaviour Model for Persuasive
Design,” Proc. 4th Int’l Conf. Persuasive
Technology (Persuasive 09), ACM, 2009;
doi:10.1145/1541948.1541999.

	 6.	 E. Derby and D. Larsen, Agile Retrospec-
tives: Making Good Teams Great, Pragmatic
Bookshelf, 2006.

	 7.	 W. Cunningham, “The WyCash Portfolio
Management System,” Addendum to Proc.
Object-Oriented Programming Systems,
Languages, and Applications Conf. (OOPSLA
92), ACM Press, 1992, pp. 29–30.

	 8.	 D. Schön, Educating the Reflective Practitio-
ner, Jossey-Bass, 1987.

	 9.	 O. Hazzan and J. Tomayko, Human Aspects
of Software Engineering, Charles River Me-
dia, 2004.

Rashina Hoda leads the Software Engineering
Processes, Tools and Applications research group in
the University of Auckland’s Department of Electrical
and Computer Engineering. Her research interests
include self-organizing teams, agile software de-
velopment, and human-computer interaction. Hoda
received her PhD in computer science from Victoria
University of Wellington, New Zealand. Contact her
at r.hoda@auckland.ac.nz.

Jeffry Babb is an assistant professor of
computer information systems at West Texas A&M
University. His research interests include small-team
software development, agile software development,
and mobile application development. Babb received
his PhD in information systems from Virginia
Commonwealth University. Contact him at jbabb@
wtamu.edu.

Jacob Nørbjerg is an associate professor in
the Copenhagen Business School’s Department of IT
Management. His research interests are in systems
development organization and management and
software process improvement. Nørbjerg received
his PhD in information systems development from
the University of Copenhagen. Contact him at jno.
itm@cbs.dk.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

How to
Reach Us

Writers

For detailed information on submitting
articles, write for our Editorial Guidelines
(software@computer.org) or access
www.computer.org/software/author.htm.

Letters to the Editor

Send letters to

	 Editor, IEEE Software
	 10662 Los Vaqueros Circle
	 Los Alamitos, CA 90720
	 software@computer.org

Please provide an email address
or daytime phone number with your letter.

On the Web

www.computer.org/software

Subscribe

www.computer.org/software/subscribe

Subscription
Change of Address

Send change-of-address
requests for magazine subscriptions
to address.change@ieee.org.
Be sure to specify IEEE Software.

Membership
Change of Address

Send change-of-address requests for
IEEE and Computer Society membership to
member.services@ieee.org.

Missing
or Damaged Copies

If you are missing an issue or you
received a damaged copy, contact
help@computer.org.

Reprints of Articles

For price information or to order reprints,
send email to software@computer.org
or fax +1 714 821 4010.

Reprint Permission

To obtain permission to reprint an article,
contact the Intellectual Property Rights
Office at copyrights@ieee.org.

